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Dynamic interaction between suspended particles and defects in a nematic liquid crystal

S. Grollau, N. L. Abbott, and J. J. de Pablo
Department of Chemical Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, Wisconsin 53706

~Received 21 November 2002; published 13 May 2003!

Insertion of spherical particles into a uniform nematic liquid crystal gives rise to the formation of topological
defects. In the present work, we investigate how a spherical particle accompanied by its topological defects
interacts with neighboring disclination lines. We perform two- and three-dimensional dynamic simulations to
analyze the effect of a particle on the annihilation process of two disclination lines. The dynamics of the liquid
crystal is described by a time-dependent evolution equation on the symmetric traceless order parameter that
includes some of the salient features of liquid crystalline materials: excluded volume effects, or equivalently,
short-range order elasticity and long-range order elasticity. At the surface of the particle, the liquid crystal is
assumed to exhibit strong homeotropic anchoring. The particle is located between two disclination lines of
topological charges11/2 and21/2. Two-dimensional simulations indicate that the topological defects bound
to the particle mediate an interaction between the two disclination lines which increases the attraction between
them. This result is confirmed by three-dimensional simulations that provide a complete description of the
director field and of the order parameter around the particle. These simulations indicate that a spherical particle
between two disclination lines can be surrounded by a Saturn ring, and suggest that the dynamic behavior of
disclination lines could be used to report the structure of a defect around the particle.

DOI: 10.1103/PhysRevE.67.051703 PACS number~s!: 61.30.Jf, 77.84.Nh, 61.30.Cz, 42.79.Kr
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I. INTRODUCTION

Colloidal systems and emulsions in anisotropic host flu
such as liquid crystals are of considerable interest in a w
variety of applications. Past experimental studies have
ported that the introduction of isotropic liquid microdrople
into uniformly aligned nematic liquid crystals is accomp
nied by the formation of topological defects around the dr
lets @1#. One important characteristic of such systems is
orientation of the molecules at the surface of the part
~referred to as anchoring conditions!, which can yield vari-
ous nontrivial configurations of the nematic liquid crystal

The design of liquid-crystal based devices requires c
trol of the orientation of the molecules at the different s
faces present in the system. For a water droplet in a liq
crystal, the anchoring conditions can be controlled by us
various amphiphilic compounds adsorbed at the drop
liquid crystal interface. At solid surfaces, the control of t
orientation of the molecules can be achieved through var
treatments of the substrate, such as mechanical rubbing@2# or
the chemisorption of alkanethiols@3#. In this latter approach
the control on the orientation of the molecules as well as
strength of the anchoring is achieved through the use of s
assembled monolayers of different compositions. This te
nique has been used in different contexts and, in particula
observe topological defects around solid particles in a c
fined geometry@4#. It has also been used in applications
liquid crystals to optical amplification of ligand-recept
binding@5#, where the ligand-mediated binding of proteins
solid surfaces distorts the uniform nematic order by crea
topological defects or disclination lines. This destruction
the uniform nematic order gives rise to an optical signat
of the presence of proteins bound at the solid surfac
thereby providing a basis for development of sensors.

The possibility that a particle with homeotropic anchori
might be surrounded by a Saturn ring disclination line w
1063-651X/2003/67~5!/051703~9!/$20.00 67 0517
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first proposed by theoretical studies@6,7# and later confirmed
in experimental observations@4,8#. An alternative possibility
is that a particle can be accompanied by a point defect~hy-
perbolic hedgehog configuration! @1,9#. The stability of the
corresponding director configurations depends on many
tors, including the size of the particle, the application of
external field@10#, the strength of the anchoring@11#, and the
presence of confining surfaces in the system@12#.

The nonlinearity of the Euler-Lagrange equations that
scribe the elastic deformations of the nematic liquid crys
makes these problems nontrivial. Some of the available
oretical studies have been restricted to the linear regim
the weak anchoring limit@13,14# or have been based on an
satz functions@6,7,9#. Numerical simulations have becom
more common in recent years. Within the director descr
tion, the configuration of nematogens around a spherical
ticle has been studied through the use of Monte-Carlo sim
lations@11#, where the analysis was focused on the effects
anchoring strength. Several authors have investigated th
fect of the particle size and of the presence of confin
surfaces through numerical minimization of the Frank fr
energy@10,12#. The director configuration around a partic
has also been analyzed with molecular dynamics@15,16#.
More recently, a Monte-Carlo method has been develope
study the interaction between a particle and a hard wall@17#.
In this last study, a method based on the combination
canonical expanded ensemble simulations with a density
states formalism was proposed to obtain the potential
mean force between the particle and the wall.

Most of the previous studies based on the minimization
the elastic free energy have been performed within the di
tor description. One important limitation of the director d
scription is the restriction of the formalism to an uniaxi
order parameter of constant magnitude. The director desc
tion, however, is not appropriate for study of the region
the neighborhood of the core defect, where it is known t
©2003 The American Physical Society03-1
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the magnitude of the order parameter exhibits a steep gr
ent @18#. To obtain reliable estimates of the free ener
within the director description, one can introduce, for
stance, approximate energetic contributions in the neigh
hood of the defect@10,12#. A better approach towards de
scription of structure of the core defect~as well as its
dynamic behavior! relies on the second-rank tensor order p
rameterQ. Recently, within this latter formalism, carefu
analyses have been performed to study the dynamics of
disclination lines in an annihilation process and the ba
flow effects~see Ref.@19#, and references herein!. Within the
tensor order parameter formalism, a numerical analysis ba
on an adaptive grid has been performed to study the dire
configuration around a spherical particle in two dimensio
@20#. In this work, we use the tensor formalism to exami
how the dynamics of disclination lines is affected by t
presence of a particle accompanied by its topological defe
We view this study as a first step towards understanding h
topological defects arise and evolve in many-particle syste
when liquid crystals are used in sensors@5#.

The paper is organized as follows. In Sec. II, we introdu
the model. In Sec. III, we present and discuss the results
first study the insertion of a single particle in a nematic. T
effect of the size of the particle on the location of the defe
and the breakdown of the continuum limit is investigate
The dynamic behavior of two disclination lines of oppos
charges is then investigated. we use two- and thr
dimensional simulations to analyze how the presence o
particle with its topological defects affects and distorts
disclination lines.

II. THE MODEL

On the macroscopic level, nematics with uniaxial symm
try around a given direction can be described by the dire
n. In the director description@21#, the nematic order param
eter is assumed to be constant. The defects that appe
liquid crystalline materials are characterized by a steep
dient in the magnitude of the nematic order parameter,
flecting that locally the liquid crystal ‘‘melts,’’ and also by
strong biaxiality within the core region@18#. The director
description is thus not appropriate to investigate the struc
of core defects and their dynamic behavior. To describe
dynamic behavior of topological defects, one needs to in
duce more microscopic degrees of freedom.

At the microscopic level, nematogens can be charac
ized by a nonisotropic distribution functionc(u), which
measures the probability that a molecule is oriented in
direction u. The simplest quantity representing the anis
ropy is the symmetric traceless tensor order parameter

Qab5 K uaub2
1

3
dabL , ~1!

where the bracketŝA&5*Ac(u)dus denote an average ove
all possible orientations on the unit sphere. In the pres
work, we are interested in macroscopic samples for wh
the order parameter varies with position. In this descripti
the tensorQ(r ) defines a coarse-grained order parameter
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represents the local average, Eq.~1!, at pointr . ~It is implic-
itly assumed in this coarse-grained description that the lo
average corresponds to one monodomain characterized
probability distribution functionc(u) that depends on the
spacial positionr .) In what follows, Greek indices are use
to represent Cartesian directions, and the usual sum
repeated indices is assumed.

The equilibrium properties of the liquid crystal are d
scribed by the Landau-De Gennes free energy@21#. This
comprises a contribution describing the long-range ela
forces in the nematic phase

Fe5E dr
L1

2
~]aQbg!2, ~2!

whereL1 is a material-specific elastic constant and, secon
short-range elastic contribution of the form

Fs5E dr H A

2 S 12
U

3 DQabQab2
AU

3
QngQnaQag

1
AU

4
~QabQab!2J , ~3!

which is representative of the excluded volume effects
sponsible for the first-order transition from the isotropic
the nematic phase. In this model, the first-order transit
occurs at a magnitude of the nematic potentialU52.7.
~Starting from a kinetic theory, one can relate the nema
potentialU to the number of molecules per unit of volum
when the excluded volume effects are treated through
Onsager potential. For a detailed discussion, see Ref.@22#.!
The relative magnitude between the two contributions,
~2! and Eq.~3!, depends on the liquid crystal of interest. F
polymeric liquid crystals, short-range interactions are dom
nant, whereas long-range interactions are dominant for
molecular weight liquid crystals. The parameterA is intro-
duced to control the relative magnitude of the two contrib
tions. Given the set of phenomenological parameters
arise in this theory, it is convenient to introduce the quan
j5A18L1 /AU as a characteristic length scale for the ord
parameter changes.

In the absence of flow, the time evolution equation forQ
is obtained from the molecular fieldH that provides the driv-
ing motion responsible for the relaxation of the order para
eter towards the minimum of the free energy

]Q

]t
5GH, ~4!

whereG is the collective rotational diffusion constant. Th
molecular field is given by

H52
dF
dQ

1
I

3
Tr

dF
dQ

, ~5!

whereF5Fs1Fe denotes the total free energy,I is the iden-
tity operator, and the last term corresponds to the minimi
tion of the free energy keeping the order parameterQ trace-
3-2
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less. From Eqs.~2!–~5!, the equation of motion for the
components of the tensor order parameter is given by

]Qab

]t
52

6D!

S 12
3

2
QmnQmnD 2 H AS 12

U

3 DQab

2AUS QanQnb2
dab

3
QnrQnrD1AUQab~QnrQnr!

2L1]r
2QabJ . ~6!

The above equation is the time evolution equation for
order parameter and corresponds to a particular case o
Beris-Edwards formulation@23#, whereG is related to the
rotational diffusivity coefficientD! through the relationG
56D!/(12 3

2 QmnQmn)2. The domain of validity of Eq.~6!
is not restricted to the neighborhood of the first-order ph
transition, but it also extends into the nematic phase at h
values of the nematic potentialU ~see the discussion in Re
@22#!.

In the most general situation, the diagonalization of
tensor order parameter has the form

Q5S 2S

3
0 0

0
h2S

3
0

0 0 2
h1S

3

D , ~7!

whereS denotes the nematic scalar order parameter anh
denotes the biaxiality. The eigenvector associated with
highest eigenvalue 2S/3 corresponds to the generalization
the directorn. At bounding surfaces, we assume thatQ is
uniaxial and has the form

Q5SeqS nn2
1

3
I D , ~8!

wheren is the director at the surface andSeq is the equilib-
rium nematic order parameter given in the Doi theory@22#
by

Seq5
1

4
1

3

4
A12

8

3U
. ~9!

In the uniaxial limit, the material specific elastic constantL1
is related to the splayK11, bendK22, and twistK33 constants
through the relations@23# L15K11/S25K22/S25K33/S2,
which correspond to the one-constant approximation. O
calculations are performed with a set of parameters that
representative of a low molecular weight liquid crystal su
as pentylcyanobiphenyl~5CB! ~see Ref.@24# for the simula-
tion parameters!.

An Euler scheme is used to solve Eq.~6!. Derivatives are
evaluated by finite difference methods on a regular grid. T
05170
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insertion of a particle is implemented automatically in t
numerical procedure, where the grid is defined in the en
area of interest except in the region inside the particle. At
surface of the particle, we consider the case of strong hom
tropic anchoring where the equilibrium value of the ord
parameter is given by Eq.~9!. We have used several mes
divisions for the spatial resolution of the grid and also se
eral time steps to verify the stability of the numerical so
tion ~see Ref.@25# for the parameters of the grid!. We have
performed the numerical integration on the six compone
of Q. This allows us to verify that, at each time step, t
traceless conditionQxx1Qyy1Qzz50 is satisfied.

III. RESULTS AND DISCUSSION

A. One particle in a nematic liquid crystal in two dimensions:
Binding of its topological defects and breakdown of the

continuum limit

As mentioned in the Introduction, determining the dire
tor configuration around a spherical particle immersed i
nematic liquid crystal has been the subject of numerous s
ies. Most of the studies devoted to this problem have b
conducted in the framework of the continuum theory; t
tensor order parameter formalism has only been used ra
in this context@20#.

As a first step, we consider the insertion of one spher
particle into a nematic liquid crystal. We focus our attenti
on the case of strong homeotropic anchoring at the surfac
a particle.~The effects of varying the strength of the ancho
ing are not discussed here. Readers interested in the ef
of strength anchoring within the director formalism are r
ferred to the literature@6,7,11#.! The initial configuration
consists of a spherical particle in a uniform nematic liqu
crystal. Since the particle promotes strong homeotropic
choring, we observe that two defects of topological char
21/2 are created on each side of the particle during a
namic simulation. These two defects are first created in
neighborhood of the particle and are then repelled from
surface of the particle until they reach an equilibrium po
tion. At equilibrium, and due to the cylindrical symmetry o
the system, the corresponding director configuration is t
of a particle surrounded by a Saturn ring disclination li
~2D simulations miss the curvature of the line tension
disclination loops!. For a particle with strong homeotropi
anchoring, it is known that two defect configurations are p
sible: Saturn rings and hyperbolic hedgehog point defects
indicated in Ref.@20#, a director configuration with a dipola
defect~topological chargeq521) is unstable and change
into a configuration with a pair of defects with topologic
chargesq521/2. Starting a dynamic simulation from a con
figuration that contains a defect of topological charge21
leads indeed to the splitting of the point defect into a def
pair of topological charge21/2. For this reason, two
dimensional dynamic simulations within the tensor order
rameter formalism yield a particle accompanied by two d
fects of charge21/2. In previous numerical analyses bas
on the minimization of the Frank free energy@10,12,26,27#,
the study of the hyperbolic hedgehog configuration was o
possible through an artificial numerical ‘‘pinning’’ tha
3-3
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avoids the splitting of the point defect. This numerical p
ning, which is probably due to the lack of microscopic d
grees of freedom in the director description, makes the
perbolic hedgehog configuration artificially stable in tw
dimensional calculations based on the Frank free ene
minimizations.

We have analyzed the equilibrium location of the tw
defects of charge21/2 as a function of particle size. Figur
1 shows the distancea between the center of the particle an
the defect position for various radiiR of the particle. In the
numerical procedure, the defect position is obtained by lo
ing for the minimum value in the nematic scalar order p
rameterS. We have performed simulations for several siz
of the system to verify that there are no finite-size effec
~The lengths of the box are denoted byLx and Ly .) When
the size of the particle is large~see the data forR51.2 mm
andR52.0 mm), we observe that the numerical data are
agreement with the continuum limit@20#, namely:

a5~7/3!1/4R'1.236R. ~10!

Equation~10! is obtained using an electrostatic analogy.
discussed in Ref.@20#, this expression should be valid whe
the spatial extension of the core defect is small compare
the size of the particle. Equation~10! defines the small-
defect limit and should be valid for large particles or, mo
precisely, when the continuum formalism is appropriate
describe the director configuration around the particle. In
simulations, we observe that the small-defect limit is sa
fied when the radiusR of the particle is larger thanj, the
characteristic length scale for changes in the scalar o
parameter (j50.7 mm). For particles whose radii ar
smaller than 1mm, we observe that the small-defect limit
not satisfied. The defects are repelled from the particle
distancea where the ratioa/R is larger than 1.236. For in
stance, for a particle of radiusR50.2 mm, we find that the
defect is located ata'(0.3560.01) mm, giving a ratio
a/R51.75. In the remainder of this work, all simulations a

FIG. 1. Location of the defecta/R for various radiiR of the
particle: breakdown of the continuum limit for small particles. T
dotted line represents the continuum limit Eq.~10! obtained using
an electrostatic analogy@20#.
05170
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performed with a particle of radiusR50.2 mm, which is
commensurate with common viruses.~All lengths are given
in micrometers. When one works with dimensionless qu
tities, the valueR50.2 mm corresponds to a particle of ra
dius R50.5, and this has to be compared withj51.8.!

Figures 2 and 3 show the nematic scalar order parameS
and the biaxialityh, respectively, at equilibrium. In the
equatorial plane~the plane that contains the two defects, a
referred tou5p/2 on Figs. 2 and 3!, we observe a steep
gradient in the magnitude of the nematic order parame
The core defect is characterized by a nematic order par
eter that tends to zero, indicating that locally the liquid cry
tal ‘‘melts,’’ and also by a strong biaxiality. One might als
note that at the pole~referred tou50), the magnitude of the
order parameter as well as the magnitude of the biaxia
differ from their equilibrium value in the uniaxial nemati
phase, even though the director configuration does not
hibit any discontinuities at the pole. The reason for th
comes from the small size of the particle that is conside
here. For this submicrometer particleR&j, the spatial ex-
tension of the defect is indeed comparable to the size of

FIG. 2. Nematic scalar order parameterS around a spherica
particle in the equatorial plane (u5p/2) and at the pole (u50).

FIG. 3. Biaxialityh around a spherical particle in the equator
plane (u5p/2) and at the pole (u50).
3-4
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DYNAMIC INTERACTION BETWEEN SUSPENDED . . . PHYSICAL REVIEW E67, 051703 ~2003!
particle. The core defect located in the equatorial plane of
particle influences thus the structure of the nematic eve
the poles, leading to the decrease in the scalar paramete
a nonzero biaxiality at the poles of the particle.

B. Annihilation of two disclination lines in two dimensions:
Effect of confining surfaces

The annihilation of two disclination lines is first examine
in the absence of any particles. Simulations are started f
an initial configuration where the tensor order paramete
given by Eqs.~8! and ~9!, and the director profile (nx ,ny)
5(cosf,sinf) is given by the superposition of two disclina
tion lines of opposite charge:

f52
1

2
tan21S y2y2

x2x2
D1

1

2
tan21S y2y1

x2x1
D . ~11!

The coordinates (x2 ,y2) and (x1 ,y1) correspond to the
location of the two21/2 and11/2 disclination lines, respec
tively. In our simulations, the disclination lines are separa
by a distancedx52.8 mm and are located at the same ver
cal coordinatey, in the middle of the cell. We have analyze
the relaxation dynamics of the annihilation process when
disclination lines are located between two confining h
walls separated by a distanceLx ~the two hard walls are
located at the extremities of the cell,xmin and xmax). Free
boundary conditions are imposed at the top and at the bo
of the cell. The relaxation dynamics of the scalar order
rameterS and the effect of the confining surfaces are rep
sented in Figs. 4 and 5, respectively. In the initial configu
tion, the nematic order parameterS is homogeneous, with
Seq50.5. As indicated in Fig. 4, at the beginning of th
simulation the two defects are characterized by a strong
crease in the magnitude ofS. As the disclination lines move
the two minima inS get closer to each other and collapse
the time of annihilation, betweent517 ms andt518 ms.
After the annihilation, there is a single minimum inS that
tends to its equilibrium value~see data att540 ms). The
effects of confining surfaces are represented in Figure

FIG. 4. Dynamic relaxation of the nematic scalar order para
eter S during the annihilation of two disclination lines (Lx

54.8 mm).
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When hard walls are separated by a distance larger thaLx
55.6 mm, the time for annihilation is constant and equal
t'18.3 ms. This corresponds to the annihilation of two d
clination lines in the bulk limit, when bounding surfaces d
not influence the annihilation. As the hard walls get closer
the disclination lines, the time for annihilation becom
shorter. The two disclination lines are indeed repelled by
presence of the hard walls. The repulsion created by
walls does not depend on the charges of the disclination l
@21# and the defects move according to symmetric dynam
trajectories. As pointed out in previous calculations devo
to the study of the annihilation process, a dynamic simu
tion that includes the backflow effects would not necessa
lead to symmetric dynamical trajectories~see the recen
study@19#!. In the following section, the length of the box
fixed atLx54.8 mm.

C. Interaction between one particle and two disclination lines
in two and three dimensions

We now consider how the presence of a particle infl
ences the annihilation of two disclination lines. We have fi
performed two-dimensional simulations where a spher
particle is located in the middle of the two lines. As in th
preceding section, the initial configuration is given by t
director profile, Eq.~11!. A particle with strong homeotropic
anchoring is inserted between the two lines. The radius of
particle is fixed atR50.2 mm, and the two disclination lines
are separated by a distancedx52.8 mm. Figure 6 shows the
director configuration at four different time steps. These ‘‘o
tical pictures’’ are obtained by assigning a color that is p
portional to (nxny)

2. This is representative of the intensity o
the light transmitted in a direction perpendicular to the ce
when two crossed polarizers are aligned in the horizontal~or
x) and vertical~or y) directions. In this optical picture, a
defect of topological charges61/2 is characterized by two
bright brushes~see Fig. 6!. The schemes in Fig. 7 represe

- FIG. 5. Defect positions during the annihilation of two disclin
tion lines; the positions correspond to the two coordinatesx of the
two disclination lines. The hard walls are separated by the distan
Lx53.2, 4.0, 4.8, and 5.6mm and are located atxwalls561.6,
62.0, 62.4, and62.8 mm, respectively.
3-5
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GROLLAU, ABBOTT, AND de PABLO PHYSICAL REVIEW E67, 051703 ~2003!
FIG. 6. Optical picture for the annihilation of two disclinatio
lines, with a particle located in the middle of the cell: from top
bottom, the snapshots are taken att50.05, 2, 10, and 22 ms.~The
lengths are given in micrometers, andLx5Ly54.8 mm.!
05170
the corresponding director profile for the initial configur
tion, an intermediate configuration with the two defec
bound to the particle, and the equilibrium configuration af
the annihilation. In the initial steps of the dynamic simul
tions, the two topological defects that are created by the
ticle appear at a position that is shifted in the direction of
disclination line of charge11/2. When the two disclination
lines are far away from the particle~see the optical picture a
t50.05 ms andt52 ms), the director in the neighborhoo
of the particle is quasiuniform along thex direction and the
defects are located on the top and bottom of the parti
However, they are slightly shifted in the direction of th
11/2 disclination line due to the attractive force between
defects of opposite charges@21#. As the disclination lines
move towards the particle during the annihilation proce
the defects of the particle rotate around the particle in
direction of the11/2 disclination line~see the optical picture
at t510 ms). At a certain point, the11/2 disclination line
collapses with the two defects of topological charge21/2.
This occurs at timet'12 ms, and it gives rise to a new
configuration where there is a single topological defect
charge21/2. This new defect, as well as the21/2 disclina-
tion line on the right side of the particle, reach a final eq
librium location. The final configuration therefore consists
a particle with two defects of charge21/2 ~or equivalently,
the Saturn ring configuration in two dimensions; see the
tical picture att522 ms).

FIG. 7. Illustrative schemes representing the director profile
the annihilation of two disclination lines, with a particle located
the middle of the cell: initial configuration~a!, intermediate con-
figuration with two defects of charge21/2 near the particle~b!, and
equilibrium configuration after annihilation~c!.
3-6
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DYNAMIC INTERACTION BETWEEN SUSPENDED . . . PHYSICAL REVIEW E67, 051703 ~2003!
Figure 8 shows the defect positions of the two disclinat
lines. Let us recall that the defect positions are identified
looking for the minimum value ofS. It is of interest to com-
pare these results with those for a ‘‘pure annihilation.’’ T
dynamic trajectories indicate that, in the presence of the
ticle, the disclination lines move faster than in the pure
nihilation process. The increase in the velocity is signific
for 5 ms<t<10 ms. This increase is induced by the tw
defects that are bound to the particle and that mediate
additive attractive force between the two lines. As mention
previously, att'12 ms the three defects collapse, leading
a defect of topological charge21/2. The minimum in the
magnitude ofS, from which the dynamic trajectories are d
fined, corresponds to the dynamic trajectory of the discli
tion line of charge11/2 as long ast<12 ms. But, after the
collapse (t>12 ms), the dynamic trajectory corresponds
the trajectory of the resulting21/2 disclination line. As
shown in Fig. 8, after the collapse of the three defects,
observe that the curvature of the dynamic trajectory chan
This indicates a decrease in the velocity of the defect. Ft
>12 ms, the dynamic trajectory corresponds indeed to
relaxation of the21/2 disclination lines towards their equ
librium location. The two disclination lines of charge21/2
move in the direction of the surface of the particle until th
reach an equilibrium position at a distance given by the ra
a/R51.75.

These two-dimensional simulations permit study of t
effects of one particle on the dynamic behavior of disclin
tion lines. However, a complete description of the direc
field requires simulation of a three-dimensional system.
have performed three-dimensional simulations to study
nematic order parameter and the structure of the direc
Figure 9 illustrates the system considered in this work: t
disclination lines are located along they direction and are
separated by a distancedz53.2 mm. A particle with a radius
R50.2 mm is located in the middle of the cell. This particu
lar geometry was adopted because it mimics experim
currently underway in our laboratory. The simulations a
performed on a grid of size 10031003100, and the lengths

FIG. 8. Defect position during the annihilation of two disclin
tion lines, in the presence of one particle, and in a ‘‘pure’’ anni
lation process.~The lengths of the box areLx5Ly54.8 mm.!
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of the box are fixed atLx5Ly5Lz54 mm. At the top and
bottom surfaces, liquid crystal molecules are strongly
chored along thex direction. Periodic boundary condition
are imposed at the surfacesymin522 mm and ymax
52 mm.

Figure 10 represents the nematic order parameter in
yz plane, in the middle of the cell, and at three different tim
steps. The magnitude ofS in this figure is represented by
color. The order parameter around the particle att
50.05 ms presents two minima in the equatorial plane. T
indicates that, at the beginning of the simulation, the part
is surrounded by a Saturn Ring, parallel to thexy plane. This
is also confirmed by the director configuration. The proje
tion of the director configuration in thexy plane, in the
middle of the cell, is represented in Fig. 11, at three differ
times. The observation of the Saturn ring in the initial m
ments of the calculations reflects that, at the beginning,
as long as the two disclination lines are far away from
particle, the director field in the neighborhood of the partic
is quasiuniform with an average orientation of the molecu
in the z direction ~see Fig. 11 att58 ms). As the two lines
get closer to each other, they interact with the defect t
accompanies the particle. In Fig. 10, it is observed that
lines are distorted near the particle~see the order paramete
at t514 ms). Near the particle, the disclination lines a
closer to each other, as compared to their locations at
extremities of the cell, aty562 mm. This is in agreemen
with the results of two-dimensional simulations, showi
that the presence of the particle increases the velocity of
disclination lines. The director configuration in thexz plane
is similar to that obtained in two-dimensional simulatio
reported on the optical picture of Fig. 6; the Saturn ring
progressively distorted in such a way that the11/2 disclina-
tion line attracts the21/2 Saturn ring. From the directo
configuration shown in Fig. 11, one can see that at the
face of the particle the molecules are perpendicular to
surface and they progressively point in thez direction as one
moves away from the center~see figure att58 ms). As the
disclination lines annihilate, the orientations of the molecu
change in such a way that the molecules progressively ro
to be in thexy plane~see the figures att514 ms and also a
t520 ms). Finally, two defects of topological charge21/2
are created near the particle~see the figure att520 ms) and
the final configuration corresponds to a particle surroun

-

FIG. 9. Illustrative scheme representing the three-dimensio
simulations: one spherical particle is located in the middle of
cell and two disclination lines are imposed in they direction.
3-7
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by a new Saturn ring in theyz plane. The final configuration
with this new Saturn ring can also be clearly identified by
order parameter of Fig. 10, at timet534 ms.

From the initial to the final configuration, the results
our simulations show that the location of the Saturn ring
pivoted around the particle, by an angle ofp/2. These simu-
lations suggest that experimentally the use of disclinat
lines could modify the defect structure of the particle: the u
of disclination lines of opposite charges, which can be c
ated through the application of an external field~for a mag-
nitude of the field larger than the critical value of the Fre
eriks transition@21#!, could permit control of the orientation
of the Saturn ring around the particle.

FIG. 10. Nematic scalar order parameterS in the yz plane. A
color is attributed for the magnitude ofS. From top to bottom, the
snapshots are taken att50.5, 14, and 34 ms.
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IV. CONCLUSION

The dynamic behavior of a nematic liquid crystal h
been examined within a tensor order parameter formali
We have first considered the insertion of a single spher

FIG. 11. Projection of the director configuration in thexy plane
and near the particle: from top to bottom, the snapshots are take
t58, 14, and 20 ms.
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particle that anchors the molecules perpendicularly to its
face. The location of the defects that are bound to the par
has been analyzed for various sizes of the particle. It is fo
that a deviation from the continuum limit occurs when t
radius of the particleR is smaller than the length scalej
characteristic for changes in the nematic order parameter
such submicrometer particles (R;j), the defects are re
pelled at a distance remote from the particle, and the lin
expression giving the location of the defect for macrosco
particle is no longer valid. Using two- and three-dimensio
simulations, we have examined the interaction between
clination lines and a particle. The results of these simulati
suggest that a particle between two disclination lines co
be surrounded by a Saturn ring. We find that the dynamic
the disclination lines are influenced by an effective inter
tion mediated by the topological defects that are bound to
y
.

y

ci-

.

.

ev

J
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particle. The two disclination lines feel a stronger attracti
near the particle and are progressively distorted near the
ticle. As the two lines annihilate, they interact with the defe
of the particle and the Saturn ring~around the particle! is
progressively distorted. This process ends with a configu
tion where the particle is surrounded by a new Saturn ri
These results provide some insights on possible ways
controlling defect structure through the use of disclinati
lines, and will be the subject of a forthcoming experimen
study.
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