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Dynamic interaction between suspended particles and defects in a nematic liquid crystal
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Insertion of spherical particles into a uniform nematic liquid crystal gives rise to the formation of topological
defects. In the present work, we investigate how a spherical particle accompanied by its topological defects
interacts with neighboring disclination lines. We perform two- and three-dimensional dynamic simulations to
analyze the effect of a particle on the annihilation process of two disclination lines. The dynamics of the liquid
crystal is described by a time-dependent evolution equation on the symmetric traceless order parameter that
includes some of the salient features of liquid crystalline materials: excluded volume effects, or equivalently,
short-range order elasticity and long-range order elasticity. At the surface of the particle, the liquid crystal is
assumed to exhibit strong homeotropic anchoring. The particle is located between two disclination lines of
topological charges-1/2 and— 1/2. Two-dimensional simulations indicate that the topological defects bound
to the particle mediate an interaction between the two disclination lines which increases the attraction between
them. This result is confirmed by three-dimensional simulations that provide a complete description of the
director field and of the order parameter around the particle. These simulations indicate that a spherical particle
between two disclination lines can be surrounded by a Saturn ring, and suggest that the dynamic behavior of
disclination lines could be used to report the structure of a defect around the particle.
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[. INTRODUCTION first proposed by theoretical studigg 7] and later confirmed
in experimental observationd,8]. An alternative possibility
Colloidal systems and emulsions in anisotropic host fluidss that a particle can be accompanied by a point ddfegt
such as liquid crystals are of considerable interest in a widperbolic hedgehog configuratiphl,9]. The stability of the
variety of applications. Past experimental studies have recorresponding director configurations depends on many fac-
ported that the introduction of isotropic liquid microdroplets tors, including the size of the particle, the application of an
into uniformly aligned nematic liquid crystals is accompa- external field 10], the strength of the anchoringl], and the
nied by the formation of topological defects around the droppresence of confining surfaces in the sys{d@.
lets [1]. One important characteristic of such systems is the The nonlinearity of the Euler-Lagrange equations that de-
orientation of the molecules at the surface of the particlescribe the elastic deformations of the nematic liquid crystal
(referred to as anchoring conditionsvhich can yield vari- makes these problems nontrivial. Some of the available the-
ous nontrivial configurations of the nematic liquid crystal. oretical studies have been restricted to the linear regime in
The design of liquid-crystal based devices requires conthe weak anchoring limif13,14] or have been based on an-
trol of the orientation of the molecules at the different sur-satz functiong6,7,9. Numerical simulations have become
faces present in the system. For a water droplet in a liquistnore common in recent years. Within the director descrip-
crystal, the anchoring conditions can be controlled by usindion, the configuration of nematogens around a spherical par-
various amphiphilic compounds adsorbed at the dropletticle has been studied through the use of Monte-Carlo simu-
liquid crystal interface. At solid surfaces, the control of thelations[11], where the analysis was focused on the effects of
orientation of the molecules can be achieved through variouanchoring strength. Several authors have investigated the ef-
treatments of the substrate, such as mechanical rupBjmy  fect of the particle size and of the presence of confining
the chemisorption of alkanethidl8]. In this latter approach, surfaces through numerical minimization of the Frank free
the control on the orientation of the molecules as well as thenergy[10,12. The director configuration around a particle
strength of the anchoring is achieved through the use of sellhas also been analyzed with molecular dynanits,16].
assembled monolayers of different compositions. This techMore recently, a Monte-Carlo method has been developed to
nique has been used in different contexts and, in particular, tetudy the interaction between a particle and a hard M.
observe topological defects around solid particles in a conh this last study, a method based on the combination of
fined geometnf4]. It has also been used in applications of canonical expanded ensemble simulations with a density-of-
liquid crystals to optical amplification of ligand-receptor states formalism was proposed to obtain the potential of
binding[5], where the ligand-mediated binding of proteins atmean force between the particle and the wall.
solid surfaces distorts the uniform nematic order by creating Most of the previous studies based on the minimization of
topological defects or disclination lines. This destruction ofthe elastic free energy have been performed within the direc-
the uniform nematic order gives rise to an optical signaturgor description. One important limitation of the director de-
of the presence of proteins bound at the solid surfacescription is the restriction of the formalism to an uniaxial
thereby providing a basis for development of sensors. order parameter of constant magnitude. The director descrip-
The possibility that a particle with homeotropic anchoringtion, however, is not appropriate for study of the region in
might be surrounded by a Saturn ring disclination line washe neighborhood of the core defect, where it is known that
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the magnitude of the order parameter exhibits a steep gradiepresents the local average, ), at pointr. (It is implic-

ent [18]. To obtain reliable estimates of the free energyitly assumed in this coarse-grained description that the local
within the director description, one can introduce, for in-average corresponds to one monodomain characterized by a
stance, approximate energetic contributions in the neighbolprobability distribution functiony(u) that depends on the
hood of the defecf10,12. A better approach towards de- spacial positiorr.) In what follows, Greek indices are used
scription of structure of the core defecas well as its to represent Cartesian directions, and the usual sum over
dynamic behavidrrelies on the second-rank tensor order Pa-repeated indices is assumed.

rameter Q. Recently, within this latter formalism, careful The equilibrium properties of the liquid crystal are de-
analyses have been performed to study the dynamics of twecribed by the Landau-De Gennes free endi@y]. This

disclination lines in an annihilation process and the back:omprises a contribution describing the long-range elastic
flow effects(see Ref[19], and references herginWithin the  forces in the nematic phase

tensor order parameter formalism, a numerical analysis based

on an adaptive grid has been performed to study the director L, )

configuration around a spherical particle in two dimensions fe:f dr 7(‘7«1Qﬁy) ' @)

[20]. In this work, we use the tensor formalism to examine

how the dynamics of disclination lines is affected by thewhereL , is a material-specific elastic constant and, second, a

presence of a particle accompanied by its topological defectghort-range elastic contribution of the form
We view this study as a first step towards understanding how

topological defects arise and evolve in many-particle systems A U
when liquid crystals are used in sensfB }—s:f dr[ﬁ( 1_§)QaﬁQaﬁ_ ?viQanav
The paper is organized as follows. In Sec. Il, we introduce
the model. In Sec. lll, we present and discuss the results. We AU 5
first study the insertion of a single particle in a nematic. The +T(QaﬁQaﬁ) ' )
effect of the size of the particle on the location of the defects
and the breakdown of the continuum limit is investigated.which is representative of the excluded volume effects re-
The dynamic behavior of two disclination lines of opposite sponsible for the first-order transition from the isotropic to
charges is then investigated. we use two- and threethe nematic phase. In this model, the first-order transition
dimensional simulations to analyze how the presence of accurs at a magnitude of the nematic potentibk2.7.
particle with its topological defects affects and distorts the(Starting from a kinetic theory, one can relate the nematic
disclination lines. potentialU to the number of molecules per unit of volume,
when the excluded volume effects are treated through the
Il. THE MODEL Onsager potential. For a detailed discussion, see [R2f.)
The relative magnitude between the two contributions, Eq.
On the macroscopic level, nematics with uniaxial symme+2) and Eq.(3), depends on the liquid crystal of interest. For
try around a given direction can be described by the directopolymeric liquid crystals, short-range interactions are domi-
n. In the director descriptiof21], the nematic order param- nant, whereas long-range interactions are dominant for low
eter is assumed to be constant. The defects that appear riffolecular weight liquid crystals. The parameteiis intro-
liquid crystalline materials are characterized by a steep graduced to control the relative magnitude of the two contribu-
dient in the magnitude of the nematic order parameter, retions. Given the set of phenomenological parameters that
flecting that locally the liquid crystal “melts,” and also by a arise in this theory, it is convenient to introduce the quantity

strong biaxiality within the core regiofi8]. The director  ¢=./18.,/AU as a characteristic length scale for the order
description is thus not appropriate to investigate the structurgarameter changes.

of core defects and their dynamic behavior. To describe the | the absence of flow, the time evolution equation @r

dynamic behavior of topological defects, one needs to introjs gptained from the molecular field that provides the driv-

duce more microscopic degrees of freedom. ing motion responsible for the relaxation of the order param-
At the microscopic level, nematogens can be charactelgter towards the minimum of the free energy

ized by a nonisotropic distribution functiog(u), which

measures the probability that a molecule is oriented in the aQ

direction u. The simplest quantity representing the anisot- = ~IH, (4)
ropy is the symmetric traceless tensor order parameter

1 whereT is the collective rotational diffusion constant. The
molecular field is given b
Qaﬁ=<uauﬂ—§5aﬁ>, (1) g y
_OF 1_o6F
where the bracketsA) = [ Ay (u)du, denote an average over H=- 5Q T3l 5Q’
all possible orientations on the unit sphere. In the present
work, we are interested in macroscopic samples for whiclwhere F= F,+ F, denotes the total free enerdyis the iden-
the order parameter varies with position. In this descriptionfity operator, and the last term corresponds to the minimiza-
the tensoQ(r) defines a coarse-grained order parameter thaion of the free energy keeping the order parame&tdrace-

®)
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less. From Eqs(2)—(5), the equation of motion for the insertion of a particle is implemented automatically in the
components of the tensor order parameter is given by numerical procedure, where the grid is defined in the entire
area of interest except in the region inside the particle. At the

9Qup 6D* U surface of the particle, we consider the case of strong homeo-
at 3 2| Al 1= 3 Qup tropic anchoring where the equilibrium value of the order
(1— EQMVQMV) parameter is given by Ed9). We have used several mesh

divisions for the spatial resolution of the grid and also sev-

eral time steps to verify the stability of the numerical solu-
+AUQ.4(Q,,Q,,)  tion (see Ref[25] for the parameters of the glidWe have

performed the numerical integration on the six components

6aﬁ
—AU QanvB_?vava

) of Q. This allows us to verify that, at each time step, the
~L19,Qap- ©)  traceless conditio®,+ Qyy+ Q,,=0 is satisfied.
The above equation is the time evolution equation for the . RESULTS AND DISCUSSION

order parameter and corresponds to a particular case of the o o ) ) )
Beris-Edwards formulatiofi23], whereT is related to the A. Ope partlclg ina nem_atlc liquid crystal in two dimensions:
rotational diffusivity coefficientD* through the relatiod” Binding of its topological defects and breakdown of the
=6D*/(1-2Q,,Q,,) The domain of validity of Eq(6) continuum limit

is not restricted to the neighborhood of the first-order phase As mentioned in the Introduction, determining the direc-
transition, but it also extends into the nematic phase at higkor configuration around a spherical particle immersed in a
values of the nematic potentitl (see the discussion in Ref. nematic liquid crystal has been the subject of numerous stud-

[22]). ies. Most of the studies devoted to this problem have been
In the most general situation, the diagonalization of theconducted in the framework of the continuum theory; the
tensor order parameter has the form tensor order parameter formalism has only been used rarely

in this context 20].
2_5 0 0 As a first step, we consider the insertion of one spherical
3 particle into a nematic liquid crystal. We focus our attention
7—S on the case of strong homeotropic anchoring at the surface of
Q=| O 3 0 , (7) a particle.(The effects of varying the strength of the anchor-
ing are not discussed here. Readers interested in the effects
n+S of strength anchoring within the director formalism are re-
0 0 T3 ferred to the literaturg6,7,11.) The initial configuration

consists of a spherical particle in a uniform nematic liquid

where S denotes the nematic scalar order parameter and crystal. Since the particle promotes strong homeotropic an-
denotes the biaxiality. The eigenvector associated with théhoring, we observe that two defects of topological charge

highest eigenvalue 3 corresponds to the generalization of —1/2 are created on each side of the particle during a dy-
the directorn. At bounding surfaces, we assume tiGais ~ namic simulation. These two defects are first created in the

uniaxial and has the form neighborhood of the particle and are then repelled from the
surface of the particle until they reach an equilibrium posi-

1 tion. At equilibrium, and due to the cylindrical symmetry of
Q:Seq( nn-— §|)’ (®) the system, the corresponding director configuration is that

of a particle surrounded by a Saturn ring disclination line
wheren is the director at the surface a9 is the equilib- (2D simulations miss the curvature of the line tension of
rium nematic order parameter given in the Doi thef2g]  disclination loops For a particle with strong homeotropic

by anchoring, it is known that two defect configurations are pos-
sible: Saturn rings and hyperbolic hedgehog point defects. As

eq_ 1 3 | 8 indicated in Ref[20], a director configuration with a dipolar

S 2 * 4 1 3U ©) defect(topological chargeg= —1) is unstable and changes

into a configuration with a pair of defects with topological

In the uniaxial limit, the material specific elastic constapt chargegy= —1/2. Starting a dynamic simulation from a con-
is related to the splalf{ 1, bendK,,, and twistK 35 constants ~ figuration that contains a defect of topological chargé
through the relationg23] L;=K,;/S?=K,,/S°=K33/S?,  leads indeed to the splitting of the point defect into a defect
which correspond to the one-constant approximation. Oupair of topological charge—1/2. For this reason, two-
calculations are performed with a set of parameters that ardimensional dynamic simulations within the tensor order pa-
representative of a low molecular weight liquid crystal suchrameter formalism yield a particle accompanied by two de-
as pentylcyanobiphenybCB) (see Ref[24] for the simula-  fects of charge-1/2. In previous numerical analyses based
tion parametens on the minimization of the Frank free enerf}}0,12,26,27,

An Euler scheme is used to solve Ef). Derivatives are the study of the hyperbolic hedgehog configuration was only
evaluated by finite difference methods on a regular grid. Thepossible through an artificial numerical “pinning” that
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FIG. 1. Location of the defeca/R for various radiiR of the FIG. 2. Nematic scalar order parame®raround a spherical
particle: breakdown of the continuum limit for small particles. The particle in the equatorial planed& 7/2) and at the poled=0).
dotted line represents the continuum limit E40) obtained using

an electrostatic analody0]. performed with a particle of radiuR=0.2 um, which is
commensurate with common viruségll lengths are given
avoids the splitting of the point defect. This numerical pin-in micrometers. When one works with dimensionless quan-
ning, which is probably due to the lack of microscopic de-tities, the valueR=0.2 um corresponds to a particle of ra-
grees of freedom in the director description, makes the hyedius R=0.5, and this has to be compared witk 1.8.)
perbolic hedgehog configuration artificially stable in two-  Figures 2 and 3 show the nematic scalar order pararBeter
dimensional calculations based on the Frank free energsind the biaxiality , respectively, at equilibrium. In the
minimizations. equatorial planéthe plane that contains the two defects, and
We have analyzed the equilibrium location of the tworeferred tod= /2 on Figs. 2 and 3 we observe a steep
defects of charge-1/2 as a function of particle size. Figure gradient in the magnitude of the nematic order parameter.
1 shows the distanc@between the center of the particle and The core defect is characterized by a nematic order param-
the defect position for various radi of the particle. In the eter that tends to zero, indicating that locally the liquid crys-
numerical procedure, the defect position is obtained by looktal “melts,” and also by a strong biaxiality. One might also
ing for the minimum value in the nematic scalar order pa-note that at the pol&eferred tod=0), the magnitude of the
rameterS. We have performed simulations for several sizesorder parameter as well as the magnitude of the biaxiality
of the system to verify that there are no finite-size effectsdiffer from their equilibrium value in the uniaxial nematic
(The lengths of the box are denoted by andL,.) When  phase, even though the director configuration does not ex-
the size of the particle is largsee the data foR=1.2 um  hibit any discontinuities at the pole. The reason for this
andR=2.0 um), we observe that the numerical data are incomes from the small size of the particle that is considered
agreement with the continuum linfi20], namely: here. For this submicrometer partide< &, the spatial ex-
tension of the defect is indeed comparable to the size of the
a=(713)Y"R~1.23R. (10)

04 T T r T T T T T T

Equation(10) is obtained using an electrostatic analogy. As
discussed in Ref.20], this expression should be valid when

the spatial extension of the core defect is small compared t¢ g3
the size of the particle. EquatioflO) defines the small-
defect limit and should be valid for large particles or, more -
precisely, when the continuum formalism is appropriate to
describe the director configuration around the particle. In our™
simulations, we observe that the small-defect limit is satis- | 1
fied when the radiuf of the particle is larger thag, the
characteristic length scale for changes in the scalar orde %[
parameter £§=0.7 um). For particles whose radii are
smaller than 1um, we observe that the small-defect limit is
not satisfied. The defects are repelled from the particle at ¢ o}
distancea where the ratia/R is larger than 1.236. For in- 0
stance, for a particle of radilR=0.2 um, we find that the

defect is located at~(0.35+0.01) um, giving a ratio FIG. 3. Biaxiality 7 around a spherical particle in the equatorial
a/R=1.75. In the remainder of this work, all simulations are plane ¢==/2) and at the pole4=0).

— 68=0

15 2
Distance from the center (Lm)
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FIG. 4. Dynamic relaxation of the nematic scalar order param- FIG. 5. Defect positions during the annihilation of two disclina-
eter S during the annihilation of two disclination linesL{ tion lines; the positions correspond to the two coordinate$ the
=4.8 um). two disclination lines. The hard walls are separated by the distances

L,=3.2, 4.0, 4.8, and 5.um and are located at, ;= * 1.6,
particle. The core defect located in the equatorial plane of thec2.0, =2.4, and+2.8 um, respectively.
particle influences thus the structure of the nematic even at

the poles, Ie_adi_ng_ to the decrease in the scalar parameter ajthen hard walls are separated by a distance larger lthan
a nonzero biaxiality at the poles of the particle. =5.6 um, the time for annihilation is constant and equal to
t~18.3 ms. This corresponds to the annihilation of two dis-
B. Annihilation of two disclination lines in two dimensions: clination lines in the bulk limit, when bounding surfaces do
Effect of confining surfaces not influence the annihilation. As the hard walls get closer to

The annihilation of two disclination lines is first examined the disclination lines, the time for annihilation becomes
in the absence of any particles. Simulations are started frorahorter. The two disclination lines are indeed repelled by the
an initial configuration where the tensor order parameter i9resence of the hard walls. The repulsion created by the
given by Eqs(s) and (9), and the director prof”er(x ,ny) walls does not depend on the Charges of the disclination lines
= (Cos¢,sin ¢) is given by the Superposition of two disclina- [21] and the defects move according to SymmetriC dynamical

tion lines of opposite charge: trajectories. As pointed out in previous calculations devoted
to the study of the annihilation process, a dynamic simula-
1 (y-y-} 1 . [y-ys tion that includes the backflow effects would not necessarily
¢=—tan + 5 tan | ——— ( i i i i
2 x—x_| 2 —X, lead to symmetric dynamical trajectorigsee the recent

study[19]). In the following section, the length of the box is
The coordinatesX_,y_) and (. ,y.) correspond to the fixed atL,=4.8 um.
location of the two— 1/2 and+ 1/2 disclination lines, respec-
tively. In our simulations, the disclination lines are separated
by a distancal,=2.8 um and are located at the same verti-
cal coordinatey, in the middle of the cell. We have analyzed
the relaxation dynamics of the annihilation process when the We now consider how the presence of a particle influ-
disclination lines are located between two confining hardences the annihilation of two disclination lines. We have first
walls separated by a distantg (the two hard walls are performed two-dimensional simulations where a spherical
located at the extremities of the cel,,;, and x,5,). Free particle is located in the middle of the two lines. As in the
boundary conditions are imposed at the top and at the bottoreceding section, the initial configuration is given by the
of the cell. The relaxation dynamics of the scalar order padirector profile, Eq(11). A particle with strong homeotropic
rameterS and the effect of the confining surfaces are repre-anchoring is inserted between the two lines. The radius of the
sented in Figs. 4 and 5, respectively. In the initial configura-particle is fixed aR=0.2 um, and the two disclination lines
tion, the nematic order paramet8ris homogeneous, with are separated by a distandg=2.8 um. Figure 6 shows the
Seq=0.5. As indicated in Fig. 4, at the beginning of the director configuration at four different time steps. These “op-
simulation the two defects are characterized by a strong deical pictures” are obtained by assigning a color that is pro-
crease in the magnitude &f As the disclination lines move, portional to @Xny)z. This is representative of the intensity of
the two minima inS get closer to each other and collapse atthe light transmitted in a direction perpendicular to the cell,
the time of annihilation, betweet=17 ms andt=18 ms.  when two crossed polarizers are aligned in the horizdiotal
After the annihilation, there is a single minimum $that  x) and vertical(or y) directions. In this optical picture, a
tends to its equilibrium valuésee data at=40 ms). The defect of topological charges 1/2 is characterized by two
effects of confining surfaces are represented in Figure Soright brushegsee Fig. 6. The schemes in Fig. 7 represent

C. Interaction between one particle and two disclination lines
in two and three dimensions
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(b)

(c)

FIG. 7. lllustrative schemes representing the director profile for
the annihilation of two disclination lines, with a particle located in
the middle of the cell: initial configuratiofa), intermediate con-
figuration with two defects of charge 1/2 near the particléb), and
equilibrium configuration after annihilatioft).

the corresponding director profile for the initial configura-
tion, an intermediate configuration with the two defects
bound to the particle, and the equilibrium configuration after
the annihilation. In the initial steps of the dynamic simula-
tions, the two topological defects that are created by the par-
ticle appear at a position that is shifted in the direction of the
disclination line of charger1/2. When the two disclination
lines are far away from the partic{see the optical picture at
t=0.05 ms and =2 ms), the director in the neighborhood
of the particle is quasiuniform along thedirection and the
defects are located on the top and bottom of the particle.
However, they are slightly shifted in the direction of the
+1/2 disclination line due to the attractive force between the
defects of opposite chargg¢&1]. As the disclination lines
move towards the particle during the annihilation process,
the defects of the particle rotate around the particle in the
direction of the+ 1/2 disclination lingsee the optical picture
att=10 ms). At a certain point, the-1/2 disclination line
collapses with the two defects of topological chargé/2.
This occurs at time=12 ms, and it gives rise to a new
configuration where there is a single topological defect of
charge—1/2. This new defect, as well as thel/2 disclina-
tion line on the right side of the particle, reach a final equi-

FIG. 6. Optical picture for the annihilation of two disclination librium location. The final configuration therefore consists of
lines, with a particle located in the middle of the cell: from top to @ particle with two defects of charge1/2 (or equivalently,

bottom, the snapshots are takertat0.05, 2, 10, and 22 m¢The
lengths are given in micrometers, abg=L,=4.8 um.)

the Saturn ring configuration in two dimensions; see the op-
tical picture att=22 ms).
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FIG. 9. lllustrative scheme representing the three-dimensional
2 . 1 . 1 . I . simulations: one spherical particle is located in the middle of the

0 10 t(f'gs) 30 40 cell and two disclination lines are imposed in heirection.

g m )

Defect position (um)
<

of the box are fixed aL,=L,=L,=4 um. At the top and
bottom surfaces, liquid crystal molecules are strongly an-
chored along the direction. Periodic boundary conditions
are imposed at the surfaceg,i,=—2 um and Ynyax

FIG. 8. Defect position during the annihilation of two disclina-
tion lines, in the presence of one particle, and in a “pure” annihi-
lation process(The lengths of the box are,=L,=4.8 um.)

=2 pm.

Figure 8 shows the defect positions of the two disclination Fi’LgL]ure 10 represents the nematic order parameter in the
lines. Let us recall that the defect positions are identified by, 7 plane, in the middle of the cell, and at three different time
looking for the minimum value o8 It is of interest to com-  steps. The magnitude & in this figure is represented by a
pare these results with those for a “pure annihilation.” Thecolor. The order parameter around the particle tat
dynamic trajectories indicate that, in the presence of the par=0.05 ms presents two minima in the equatorial plane. This
ticle, the disclination lines move faster than in the pure anindicates that, at the beginning of the simulation, the particle
nihilation process. The increase in the velocity is significants surrounded by a Saturn Ring, parallel to #yeplane. This
for 5 ms<t<10 ms. This increase is induced by the twois also confirmed by the director configuration. The projec-
defects that are bound to the particle and that mediate agion of the director configuration in thay plane, in the
additive attractive force between the two lines. As mentionedniddle of the cell, is represented in Fig. 11, at three different
previously, att~12 ms the three defects collapse, leading totimes. The observation of the Saturn ring in the initial mo-
a defect of topological charge 1/2. The minimum in the ments of the calculations reflects that, at the beginning, and
magnitude ofS, from which the dynamic trajectories are de- as long as the two disclination lines are far away from the
fined, corresponds to the dynamic trajectory of the disclinaparticle, the director field in the neighborhood of the particle
tion line of charge+ 1/2 as long a$=<12 ms. But, after the is quasiuniform with an average orientation of the molecules
collapse {=12 ms), the dynamic trajectory corresponds toin the z direction (see Fig. 11 at=8 ms). As the two lines
the trajectory of the resulting-1/2 disclination line. As get closer to each other, they interact with the defect that
shown in Fig. 8, after the collapse of the three defects, weiccompanies the particle. In Fig. 10, it is observed that the
observe that the curvature of the dynamic trajectory changetines are distorted near the partidkee the order parameter
This indicates a decrease in the velocity of the defect.tFor at t=14 ms). Near the particle, the disclination lines are
=12 ms, the dynamic trajectory corresponds indeed to theloser to each other, as compared to their locations at the
relaxation of the—1/2 disclination lines towards their equi- extremities of the cell, ag=*+2 um. This is in agreement
librium location. The two disclination lines of chargel/2  with the results of two-dimensional simulations, showing
move in the direction of the surface of the particle until theythat the presence of the particle increases the velocity of the
reach an equilibrium position at a distance given by the ratiaisclination lines. The director configuration in tke plane
a/R=1.75. is similar to that obtained in two-dimensional simulations

These two-dimensional simulations permit study of thereported on the optical picture of Fig. 6; the Saturn ring is
effects of one particle on the dynamic behavior of disclina-progressively distorted in such a way that th&/2 disclina-
tion lines. However, a complete description of the directortion line attracts the—1/2 Saturn ring. From the director
field requires simulation of a three-dimensional system. Weconfiguration shown in Fig. 11, one can see that at the sur-
have performed three-dimensional simulations to study théace of the particle the molecules are perpendicular to the
nematic order parameter and the structure of the directosurface and they progressively point in thdirection as one
Figure 9 illustrates the system considered in this work: twomoves away from the centésee figure at=8 ms). As the
disclination lines are located along tlyedirection and are disclination lines annihilate, the orientations of the molecules
separated by a distande=3.2 um. A particle with a radius change in such a way that the molecules progressively rotate
R=0.2 um is located in the middle of the cell. This particu- to be in thexy plane(see the figures dt=14 ms and also at
lar geometry was adopted because it mimics experiments=20 ms). Finally, two defects of topological chargel/2
currently underway in our laboratory. The simulations areare created near the partidigee the figure at=20 ms) and
performed on a grid of size 160100X 100, and the lengths the final configuration corresponds to a particle surrounded
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FIG. 10. Nematic scalar order paramegm the yz plane. A ’ﬁ”l&iﬁ
color is attributed for the magnitude & From top to bottom, the oal sl |
snapshots are taken &t 0.5, 14, and 34 ms. )
by a new Saturn ring in thez plane. The final configuration : : : ]
with this new Saturn ring can also be clearly identified by the - 05 0 05 1
order parameter of Fig. 10, at tinte=34 ms. X

From the initial to the final configuration, the results of
our simulations show that the location of the Saturn ring has FIG. 11. Projection of the director configuration in thg plane
pivoted around the particle, by an anglese®. These simu-  and near the particle: from top to bottom, the snapshots are taken at
lations suggest that experimentally the use of disclination=8, 14, and 20 ms.
lines could modify the defect structure of the particle: the use
of disclination lines of opposite charges, which can be cre-
ated through the application of an external filor a mag-
nitude of the field larger than the critical value of the Fred- The dynamic behavior of a nematic liquid crystal has
eriks transition21]), could permit control of the orientation been examined within a tensor order parameter formalism.
of the Saturn ring around the particle. We have first considered the insertion of a single spherical

IV. CONCLUSION

051703-8
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particle that anchors the molecules perpendicularly to its surparticle. The two disclination lines feel a stronger attraction
face. The location of the defects that are bound to the particlaear the particle and are progressively distorted near the par-
has been analyzed for various sizes of the particle. It is founticle. As the two lines annihilate, they interact with the defect
that a deviation from the continuum limit occurs when theof the particle and the Saturn ringround the particleis
radius of the particleR is smaller than the length scale  progressively distorted. This process ends with a configura-
characteristic for changes in the nematic order parameter. Féion where the particle is surrounded by a new Saturn ring.
such submicrometer particleRR{¢), the defects are re- These results provide some insights on possible ways for
pelled at a distance remote from the particle, and the lineagontrolling defect structure through the use of disclination
expression giving the location of the defect for macroscopidines, and will be the subject of a forthcoming experimental
particle is no longer valid. Using two- and three-dimensionalstudy.
simulations, we have examined the interaction between dis-
clination lines and a particle. The results of these simulations
suggest that a particle between two disclination lines could

be surrounded by a Saturn ring. We find that the dynamics of This work was supported by the National Science Foun-
the disclination lines are influenced by an effective interac-dation through the University of Wisconsin's MRSEC on
tion mediated by the topological defects that are bound to th&lanostructured Interfaces.
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